Working Stress Design

Dr. Majed Ashoor

Working Stress Method

Historically the Design method of (Working stress, Allowable Stress, or Service loads) is the first method used in design of Steel and Reinforced Concrete Structures.

The Method is Using (Working or Service Loads) \& (Working or Allowable Stress) for design.

Working or Service Loads mean: The ordinary daily loads that expected to be applied on specific structures (without any factors of increasing the loads or factor of safety)

Working or Allowable Stress means: The level of stresses that would be Accepted by the "Designer" or more accurately by the "Code" in the specific member of the structure, that give some Factor of Safety against the failure or against un acceptable deformation or deflection.

Although the recent codes are using another methods for design (The Ultimate Strength Method), the method of Working Stress is still important for the following reasons:

1. The method still being used in Steel Structures, Prestress Concrete and some other applications.
2. It is necessary to calculate the serviceability of the concrete structures (Cracks \& Deflection).
3. It is used in concrete tanks that used to reserve water or other fluids, specifically to investigate cracks.
4. Calculate deflection at service loads.

The Flexural Members

As we studied in the Strength of Materials when a flexural member is subjected to Bending Moment it will deform or deflect in a curvature form. Some of the fibers of the material (at the top or Bottom) will be exerted compression stresses, and the other fibers (at the other side) will be exerted tension stresses. The plane or the line between these two zones is called "The Neutral Axis" which will not be deformed at all and will not have tension neither compression stresses.

The Flexural Formulae

$$
\frac{M}{I}=\frac{\sigma}{y}
$$

$$
\sigma=\frac{M}{I} y
$$

$$
\frac{I}{y_{\max }}=Z
$$

$$
\begin{gathered}
\sigma_{\max }=\frac{M}{Z} \\
n=\frac{E_{s}}{E_{c}}
\end{gathered}
$$

The flexural formulae is working directly for the homogenous sections (Steel, Wood Members), However for Composite sections like (Reinforced Concrete), the section need to be transformed to an (Equivalent Section)

The flexural formulae needs also the material to be in the range of (Linear Stress-Strain Relationship) and does not work for the range of nonlinearity.

$$
f_{c} \leq 0.45 f_{c}^{\prime} \quad(\text { Allowable concrete compression stress })
$$

$$
\begin{aligned}
f_{s} & \leq 0.5 f_{y} \quad \text { (Allowable steel stress) } \\
E_{s} & =200,000 M P a \\
E_{c} & =4730 \sqrt{f_{c}^{\prime}} M P a \quad \text { (Code) } \\
f_{c r} & =0.625 \sqrt{f_{c}^{\prime}} M P a \quad \text { (Code) } \\
& \text { Modulus of Rupture }
\end{aligned}
$$

General Solution Steps:

* Transform the original section (two materials) into an equivalent section (one material)
* Calculate the location of the Neutral Axis (N.A)
* Calculate second moment of area (the moment of Inertia) of the equivalent section (about N.A)
* Apply the Flexural Formulae to calculate the stresses everywhere in the section
* Check the resulting stresses with the Code limitations

Useful Equations for Cracked Sections

$$
\rho=\frac{A s}{b d}
$$

$$
k=\sqrt{(\rho n)^{2}+2 \rho n}-\rho n
$$

$c=k d$
$n=\frac{E_{S}}{E_{c}}$

Example 1: Determine the crack moment for the section shown below, and the stress state.

$\mathrm{Es}=200000 \mathrm{MPa}$
 $\mathrm{b}=300 \mathrm{~mm}$

$\mathrm{f}^{\prime} \mathrm{c}=28 \mathrm{MPa}$ $\mathrm{h}=600 \mathrm{~mm}$
fy $=414 \mathrm{MPa}$ Cover $=50 \mathrm{~mm}$

$$
A \emptyset 20=\frac{\pi D^{2}}{4}=\frac{\pi}{4}(20)^{2}=314 \mathrm{~mm}^{2}
$$

$$
A_{s}=4 \times 314=1256 \mathrm{~mm}^{2}
$$

$$
\begin{gathered}
E_{c}=4730 \sqrt{f_{c}^{\prime}}=4730 \sqrt{28}=25028.8 \mathrm{MPa} \\
f_{c(\text { allowable })}=0.45 f_{c}^{\prime}=0.45 \times 28=12.6 \mathrm{MPa} \\
f_{s(\text { allowable })}=0.5 f_{y}=0.5 \times 414=207 \mathrm{MPa} \\
n=\frac{E_{s}}{E_{c}}=\frac{200000}{25028.8}=7.99 \cong 8 \\
d=h-\text { Cover }-10-\frac{\emptyset}{2} \\
d=600-50-10-\frac{20}{2}=530 \mathrm{~mm}
\end{gathered}
$$

$\bar{y}=\frac{b h \frac{h}{2}+(n-1) A_{s} d}{b h+(n-1) A_{s}}$ (from top fiber)

$$
\bar{y}=\frac{\frac{300 \times 600 \times 600}{2}+(8-1) \times 1256 \times 530}{300 \times 6000+(8-1) \times 1256}=310.7 \mathrm{~mm}
$$

$$
I_{g r}=\frac{b h^{3}}{12}+b h\left(\bar{y}-\frac{h}{2}\right)^{2}+(n-1) A_{s}(d-\bar{y})^{2}
$$

$$
\begin{gathered}
I_{g r}=\frac{300 \times 600^{3}}{12}+300 \times 600\left(310.7-\frac{600}{2}\right)^{2}+(8-1) \times 1256 \times(530-310.7)^{2} \\
I_{g r}=5.843 \times 10^{9} \mathrm{~mm}^{4} \\
y_{t o p}=\bar{y}=310.7 \mathrm{~mm} \\
y_{b o t}=h-\bar{y}=600-310.7=289.3 \mathrm{~mm} \\
y_{\text {steel }}=y_{b o t}-\text { cover }-10-\frac{\emptyset}{2}=289.3-70=219.3 \mathrm{~mm} \\
f_{c r}=0.625 \sqrt{f_{c}^{\prime}}=0.625 \times \sqrt{28}=3.31 \mathrm{MPa} \\
f_{b}=f_{c r}=\frac{M_{c r} y_{b}}{I_{g r}} \\
3.31=\frac{M_{c r} \times 289.3}{5.843 \times 10^{9}} \\
M_{c r}=66.852 \times 10^{6} \mathrm{N.mm}
\end{gathered}
$$

$$
M_{c r}=66.852 \mathrm{kN} . \mathrm{m}
$$

$$
f_{c}=\frac{M_{c r} y_{t}}{I_{g r}}
$$

$$
f_{c}=\frac{66.852 \times 10^{6} \times 310.7}{5.843 \times 10^{9}}=3.55 \ll 12.6 \mathrm{MPa}
$$

$$
f_{s}=n f_{c}=n \frac{M(h-\bar{y}-\text { cover }-10-\emptyset / 2)}{I_{g r}}
$$

$$
f_{s}=8 \times \frac{66.852 \times 10^{6} \times 219.3}{5.843 \times 10^{9}}=20.07 \ll 207 \mathrm{MPa}
$$

Example 2: Determine the stress state for the section in the previous example if it is subjected to service moment $\mathrm{M}=100 \mathrm{kN} . \mathrm{m}$

From the previous example: $\mathrm{Mcr}=66.85 \mathrm{kN} . \mathrm{m}$

$$
\begin{gathered}
M=100 \mathrm{kN} . m>66.85(\text { the section will crack }) \\
\rho=\frac{A s}{b d}=\frac{1256}{300 \times 530}=0.0079 \\
\rho n=0.0079 \times 8=0.0632 \\
k=\sqrt{(\rho n)^{2}+2 \rho n}-\rho n \\
k=\sqrt{(0.0632)^{2}+2 \times 0.0632}-0.0632=0.297 \\
c=k d=0.2975 \times 530=157.68 \\
I_{c r}=\frac{b c^{3}}{3}+n A_{s}(d-c)^{2} \\
I_{c r}=\frac{300 \times(157.68)^{3}}{3}+8 \times 1256 \times(530-157.68)^{2} \\
I_{c r}=392039506+1392875689=1784915195=1.785 \times 10^{9}
\end{gathered}
$$

$$
f_{c(t o p)}=\frac{M y_{t}}{I_{c r}}=\frac{M c}{I_{c r}}
$$

$$
f_{c}=\frac{100 \times 10^{6} \times 157.68}{1.785 \times 10^{9}}=8.833<12.6 \mathrm{MPa}
$$

$$
f_{s}=n f_{c}=n \frac{M(d-c)}{I_{c r}}
$$

$$
f_{s}=8 \times \frac{100 \times 10^{6} \times(530-157.68)}{1.785 \times 10^{9}}=166.866 \mathrm{MPa}<207
$$

Thank you...

Ultimate Strength Design Method

(Singly Reinforced Beams)

By: Dr. Majed Ashoor

design strength \geq required strength

Ultimate Strength Design

$$
\phi S_{n} \geq U
$$

Table: 21.2.1 Strength Reduction Factor \varnothing

Action or Structural Element	\varnothing
Moment Controlled)	0.90
Shear	0.75
Torsion	0.75
Bearing	0.65
Plain Concrete Elements	0.60

$\emptyset M_{n} \geq M_{u}$
$\emptyset V_{n} \geq V_{u}$
$\emptyset T_{n} \geq T_{u}$
$\emptyset P_{n} \geq P_{u}$

Table 5.3.1—Load combinations

Load combination	Equation	Primary load
$U=1.4 D$	$(5.3 .1 \mathrm{a})$	D
$U=1.2 D+1.6 L$		L
$U=1.2 D+1.6 L+0.5\left(L_{r}\right.$ or S or $\left.R\right)$	$(5.3 .1 \mathrm{~b})$	L
$U=1.2 D+1.6\left(L_{r}\right.$ or S or $\left.R\right)+(1.0 L$ or $0.5 W)$	$(5.3 .1 \mathrm{c})$	L_{r} or S or R
$U=1.2 D+1.0 W+1.0 L+0.5\left(L_{r}\right.$ or S or $\left.R\right)$	$(5.3 .1 \mathrm{~d})$	W
$U=1.2 D+1.0 E+1.0 L+0.2 S$	$(5.3 .1 \mathrm{e})$	E
$U=0.9 D+1.0 W$	$(5.3 .1 \mathrm{f})$	W
$U=0.9 D+1.0 E$	$(5.3 .1 \mathrm{~g})$	E

$$
\begin{equation*}
A_{s} f_{y}=0.85 f_{c}^{\prime} a b \tag{1}
\end{equation*}
$$

$$
M_{n}=A_{s} f_{y}\left(d-\frac{a}{2}\right) \quad(O R) \quad M_{n}=0.85 f_{c}^{\prime} a b\left(d-\frac{a}{2}\right)
$$

$$
\begin{equation*}
\varepsilon_{t}=0.003\left(\frac{d_{t}-c}{c}\right) \tag{3}
\end{equation*}
$$

(a) Deflected shape.
(b) Moment diagram.

(c) Reinforcement location.

Design of Single Reinforced Rectangular Beam Sections

(Design of SRRS)

By: Dr. Majed Ashoor

Before getting into design it is good to introduce the following new three terms or definitions:

$$
\rho=\frac{A_{s}}{b d} \quad m=\frac{f_{y}}{0.85 f_{c}^{\prime}} \quad R_{n}=\frac{M_{n}}{b d^{2}}
$$

$$
\begin{align*}
& A_{s} f_{y}=0.85 f_{c}^{\prime} a b \tag{1}\\
& M_{n}=A_{s} f_{y}\left(d-\frac{a}{2}\right) \tag{2}\\
& \varepsilon_{t}=0.003\left(\frac{d_{t}-c}{c}\right) \tag{3}
\end{align*}
$$

$$
\begin{align*}
& a=\rho m d \tag{1'}\\
& R_{n}=\frac{M_{n}}{b d^{2}}=\rho f_{y}\left(1-\frac{1}{2} \rho m\right) \\
& \rho=\left(\frac{0.003}{0.003+\varepsilon_{s}}\right) \frac{\beta_{1}}{m}\left(\frac{d_{t}}{d}\right) \\
& \rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R_{n}}{f_{y}}}\right)
\end{align*}
$$

As an example of usefulness of the above (dash equations) we can calculate ρb and $\rho m a x$ for (fy=420MPa) by substituting $\varepsilon s=0.002$ and $\varepsilon s=0.005$ in eq. (3 ') respectively:
$\rho_{b}=\frac{3}{5} \frac{\beta_{1}}{m}\left(\frac{d_{t}}{d}\right) \quad$ for $f y=420$ MPa because $\varepsilon y=0.002$
$\rho_{\max }=\frac{3}{8} \frac{\beta_{1}}{m}\left(\frac{d_{t}}{d}\right) \quad$ for all Cases
Or in design problems we can start estimating the As by assuming $\varepsilon s=0.007$ to stay in Tension Control Zone so:
$\rho_{\text {start }}=\frac{3}{10} \frac{\beta_{1}}{m}\left(\frac{d_{t}}{d}\right)$
Design problems will mainly depend on eq. (2')

$$
R_{n}=\frac{M_{n}}{b d^{2}}=\rho f_{y}\left(1-\frac{1}{2} \rho m\right)
$$

Table 9.3.1.1—Minimum depth of nonprestressed beams

Support condition	Minimum $\boldsymbol{h}^{[1]}$
Simply supported	$\ell / 16$
One end continuous	$\ell / 18.5$
Both ends continuous	$\ell / 21$
Cantilever	$\ell / 8$

Minimum concrete cover for beams $=40 \mathrm{~mm}$

ACI 25.2.1 the minimum clear bar spacing:

Ex1: Find the necessary reinforcement for a given section that has a width of 250 mm and total depth of 500 mm , if it is subjected to a factored moment of 180 kN . m . Given f ' $\mathrm{c}=21 \mathrm{Mpa}, \mathrm{fy}=375 \mathrm{MPa}$.

Solution:

$$
\begin{gathered}
\varepsilon_{y}=\frac{f_{y}}{E_{s}}=\frac{375}{200000}=0.001875 \\
m=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{375}{0.85 \times 21}=21.0 \\
M_{n}=\frac{180}{0.9}=200 \mathrm{kN} . \mathrm{m}
\end{gathered}
$$

Assume one layer of reinforcement

$$
\begin{gathered}
d=h-65=500-65=435 \mathrm{~mm} \\
R_{n}=\frac{M_{n}}{b d^{2}} \\
R_{n}=\frac{200 \times 10^{6}}{250 \times 435^{2}}=4.227
\end{gathered}
$$

$$
\begin{gathered}
\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R_{n}}{f_{y}}}\right) \\
\rho=\frac{1}{21}\left(1-\sqrt{1-\frac{2 \times 21 \times 4.227}{375}}\right)=0.013 \\
\rho_{\max }=\frac{3}{8} \frac{\beta_{1}}{m}\left(\frac{d_{t}}{d}\right) \\
\rho_{\max }=\frac{3}{8} \frac{\times 0.85}{\times 21.0}(1)=0.0151>0.013 \text { (ok Tension control) } \\
A_{s}=\rho b d=0.013 \times 250 \times 435=1413.75 \mathrm{~mm}^{2}
\end{gathered}
$$

Try $\varnothing 25 \rightarrow \mathrm{Ab}=490 \mathrm{~mm}^{2}$

$$
n=\frac{A s}{A b}=\frac{1413.75}{490}=2.88
$$

Use $3 \not \emptyset 25$

$$
\text { As } s_{\text {provided }}=3 \times 490=1470 \mathrm{~mm}^{2}
$$

$$
\begin{aligned}
& \rho_{\text {provided }}=\frac{1470}{250 \times 435}=0.0135<0.0151 \text { (okT.C) } \\
& \rho_{\text {min }}=\frac{1.4}{f_{y}}=\frac{1.4}{375}=0.00373<0.0135(o k) \\
& \text { Check for bar spacing: } \\
& S_{\min }=\left(\begin{array}{c}
25 \mathrm{~mm} \\
d_{b}=25 \\
\left(\frac{4}{3}\right) d_{\text {agg }}=\frac{4}{3} \times 20=26.66
\end{array}\right. \\
& s=\frac{250-100-3 \times 25}{2}=37.5>26.66(o k) \\
& M_{n}=\rho f_{y} b d^{2}\left(1-\frac{1}{2} \rho m\right) \\
& M_{n}=0.0135 \times 375 \times 250 \times 435^{2}\left(1-\frac{1}{2} \times 0.0135 \times 21.0\right)=205.54 \mathrm{kN} . \mathrm{m} \\
& M_{u}=\emptyset M_{n}=0.9 \times 205.54=184.98 k N . m>180(O K)
\end{aligned}
$$

Ex2: Design a rectangular section to resist a factored moment of $\mathbf{3 0 0} \mathrm{kN} . \mathrm{m}$. Given $\mathrm{f}^{\prime} \mathbf{c}=\mathbf{2 8 M P a}$, and $f y=420 \mathrm{MPa}$.

Solution:

$$
\begin{gathered}
M_{n}=\frac{M_{u}}{\emptyset}=\frac{300}{0.9}=333.33 \mathrm{kN} . \mathrm{m} \\
m=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 \times 28}=17.647 \\
R_{n}=\frac{M_{n}}{b d^{2}}=\rho f_{y}\left(1-\frac{1}{2} \rho m\right)
\end{gathered}
$$

Start with ρ depending on $\varepsilon s=0.007$ and assuming one layer of reinforcement:

$$
\begin{gathered}
\rho_{\text {start }}=\frac{3}{10} \frac{\beta_{1}}{m}\left(\frac{d_{t}}{d}\right) \\
\rho_{\text {start }}=\left(\frac{3}{10}\right) \frac{0.85}{17.647}(1)=0.0144 \\
R_{n}=\rho f_{y}\left(1-\frac{1}{2} \rho m\right)
\end{gathered}
$$

$$
\begin{gathered}
R_{n}=0.0144 \times 420\left(1-\frac{1}{2} \times 0.0144 \times 17.647\right)=5.277 \\
R_{n}=\frac{M_{n}}{b d^{2}} \\
5.277=\frac{333.33 \times 10^{6}}{b d^{2}} \\
b d^{2}=63166571.92 \mathrm{~mm}^{3}
\end{gathered}
$$

Assume b to get d:

b	d	d / b
250	502.66	2.01
300	458.86	1.529
350	424.82	1.213

$A_{s}=\rho b d=0.0144 \times 300 \times 460=1987.2 \mathrm{~mm}^{2}$
Try $\varnothing 22 \rightarrow A b=380$

$$
n=\frac{1987.2}{380}=5.23
$$

Use 6Ø22 in two layers:

$$
\begin{gathered}
A s_{\text {provided }}=6 \times 380=2280 \mathrm{~mm}^{2} \\
\rho_{\text {provided }}=\frac{2280}{300 \times 460}=0.0165 \\
\rho_{\max }=\frac{3}{8} \frac{\beta_{1}}{m}\left(\frac{d_{t}}{d}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \rho_{\max }=\frac{3}{8} \times \frac{0.85}{17.647} \times\left(\frac{489}{460}\right)=0.0192>0.0165(\mathrm{ok} T . C) \\
& \rho_{\min }=\frac{1.4}{f_{y}}=\frac{1.4}{420}=0.00333<0.0165(\mathrm{ok}) \\
& \\
& h=d+90=460+90=550 \mathrm{~mm} \\
& s=\frac{300-100-3 \times 22}{2}=67>26.66(\mathrm{ok})
\end{aligned}
$$

$$
M_{n}=0.0165 \times 420 \times 300 \times 460^{2}\left(1-\frac{1}{2} \times 0.0165 \times 17.647\right)=375.87 \mathrm{kN} . \mathrm{m}
$$

$$
M_{u}=\emptyset M_{n}=0.9 \times 375.87=338.283 k N . m>300(O K)
$$

Thank you...

Design of Double Reinforced Rectangular Beam Sections

(Design of DRRS)

By: Dr. Majed Ashoor

$$
A_{s} f_{y}=0.85 f_{c}^{\prime} \beta_{1} c b+A_{s}^{\prime} f_{s}^{\prime}
$$

$$
\begin{aligned}
& \rho_{\max }=\left(\frac{3}{8}\right) \frac{\beta_{1}}{m}\left(\frac{d_{t}}{d}\right) \\
& M_{n(\max)}=\rho_{\max } f_{y} b d^{2}\left(1-\frac{1}{2} \rho_{\max } m\right) \\
& M_{\text {nax }} \geq \frac{M_{u}}{\emptyset} \\
& \text { SRRS } \\
& \begin{array}{c}
\rho_{\text {start }}=\left(\frac{3}{10}\right) \frac{\beta_{1}}{m}\left(\frac{d_{t}}{d}\right) \\
M_{n 1}=\rho_{\text {start }} f_{y} b d^{2}\left(1-\frac{1}{2} \rho_{\text {start }} m\right)
\end{array} \\
& M_{n 2}=\frac{M_{u}}{\emptyset}-M_{n 1} \\
& M_{n 2}=A_{s 2} f_{y}\left(d-d^{\prime}\right) \\
& \begin{aligned}
A_{s}^{\prime} & =A s_{2} \times \frac{f_{y}}{f_{s}^{\prime}} \\
M_{n} & =M_{n 1}+M_{n 2}
\end{aligned} \\
& \begin{aligned}
A_{s}^{\prime} & =A s_{2} \times \frac{f_{y}}{f_{s}^{\prime}} \\
M_{n} & =M_{n 1}+M_{n 2}
\end{aligned} \\
& A s_{1}=\rho_{\text {start }} b d \\
& a=\rho m d \\
& a_{\text {start }}=\rho_{\text {start }} m d \\
& c_{\text {start }}=\frac{a_{\text {start }}}{\beta_{1}} \\
& f_{s}^{\prime}=0.003 E_{s}\left(\frac{c-d^{\prime}}{c}\right)
\end{aligned}
$$

Ex1: A beam section is limited to a width $\mathrm{b}=250 \mathrm{~mm}$ and a total depth of $\mathrm{h}=550 \mathrm{~mm}$ and has to resist a factored moment of $307 \mathrm{kN} . \mathrm{m}$. Calculate the required reinforcement, Given: f ' $c=21 \mathrm{MPa}, \mathrm{fy}=350 \mathrm{MPa}$

Solution:

$$
\begin{aligned}
& m=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{350}{0.85 \times 21}=19.607 \\
& \rho_{\max }=\frac{3}{8} \frac{\beta_{1}}{m}\left(\frac{d_{t}}{d}\right) \\
& \rho_{\max }=\frac{3}{8} \times \frac{0.85}{19.607}(1)=0.0162 \\
& M_{n}=\rho f_{y} b d^{2}\left(1-\frac{1}{2} \rho m\right) \\
& d=h-65=550-65=485 \mathrm{~mm} \\
& M_{n}=0.0162 \times 350 \times 250 \times 485^{2}\left(1-\frac{1}{2} 0.0162 \times 19.607\right)=280.293 \mathrm{kN} . \mathrm{m} \\
& \emptyset M_{n}=0.9 \times 280.293=252.26<307 \quad(\operatorname{Not} O \mathrm{~K})
\end{aligned}
$$

250mm

The section should be designed as a DOUBLY REINFORCED SECTION

Assume two layers of tension steel:

$$
\begin{aligned}
& d=h-90=550-90=460 \mathrm{~mm} \\
& d_{t}=h-65=550-65=485 \mathrm{~mm} \\
& d^{\prime}=65 \mathrm{~mm} \\
& \rho_{\text {start }}=\frac{3}{10} \frac{\beta 1}{m}\left(\frac{d t}{d}\right) \\
& \rho_{\text {start }}=\frac{3}{10} \times \frac{0.85}{19.607}\left(\frac{485}{460}\right)=0.0137 \\
& A_{1}=\rho_{\text {start }} b d=0.0137 \times 250 \times 460=1575.5 \mathrm{~mm}^{2} \\
& M_{n 1}=\rho f_{y} b d^{2}\left(1-\frac{1}{2} \rho m\right) \\
& M_{n 1}=0.0137 \times 350 \times 250 \times 460 \times 460\left(1-\frac{1}{2} 0.0137 \times 19.607\right)=219.786 \mathrm{kN} . \mathrm{m} \\
& M_{n 2}=\frac{M_{u}}{\emptyset}-M_{n 1} \\
& M_{n 2}=\frac{307}{0.9}-219.786=121.325 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

$$
M_{n 2}=A_{s 2} f_{y}\left(d-d^{\prime}\right)
$$

$121.325 \times 10^{6}=A_{s 2} \times 350(460-65)$

$$
A_{s 2}=877.577 \mathrm{~mm}^{2}
$$

$$
A s=A s_{1}+A s_{2}=1575.5+877.577=2453.07 \mathrm{~mm}^{2}
$$

$$
a=\rho m d=0.0137 \times 19.607 \times 460=123.563 \mathrm{~mm}
$$

$$
c=\frac{a}{\beta 1}=\frac{123.563}{0.85}=145.368 \mathrm{~mm}
$$

$$
f_{s}^{\prime}=\left[0.003\left(\frac{c-d^{\prime}}{c}\right)\right] E_{s}
$$

$$
f_{s}^{\prime}=\left[0.003\left(\frac{145.368-65}{145.368}\right)\right] 200000=331.716<f_{y}
$$

$$
A_{s}^{\prime}=A s_{2} \times \frac{f_{y}}{f_{s}^{\prime}}
$$

$$
A_{s}^{\prime}=877.577 \times \frac{350}{331.716}=926 \mathrm{~mm}^{2}
$$

Use: $3 \varnothing 20$ for compression:
$A_{s}^{\prime}=3 \times 314=942 \mathrm{~mm}^{2}>926 \mathrm{~mm}^{2}$
Use: $5 \emptyset 25$ for Tension:

$$
\begin{aligned}
& A_{s}=5 \times 490.8=2454 \mathrm{~mm}^{2} \approx 2453.07 \\
& s=\frac{150-3 \times 25}{2}=37.5>26.66(\mathrm{ok})
\end{aligned}
$$

Thank you...

EX7. Determine the design moment strength of section shown below, Given $f_{c}^{\prime}=28 \mathrm{MPa}$ and $f_{y}=420 \mathrm{MPa}$ and check the specification of the section according to ACl Code.

Solution:

$$
\begin{aligned}
& \rho=\frac{A_{s}}{\text { effective area (Ae) }} \\
& A_{s}=3 \times \pi \times \frac{25^{2}}{4}=1470 \mathrm{~mm}^{2} \\
& A_{e}=b d-150 \times 100 \\
& A_{e}=300 \times 500-150 \times 100 \\
& A_{e}=135000 \mathrm{~mm}^{2} \\
& \rho=\frac{1470}{135000}=0.0109
\end{aligned}
$$

Check ACI requirements

Check $e_{\text {min }}$

$$
\begin{aligned}
& \rho_{\text {min }}=\left\{\begin{array}{cc}
\left(\frac{0.25 \sqrt{f_{c}^{\prime}}}{f y}\right) \quad \text { for } f_{c}^{\prime}>30 \mathrm{MPa} \\
\left(\frac{1.4}{f y}\right) & \text { for } f_{c}^{\prime} \leq 30 \mathrm{MPa}
\end{array}\right. \\
& \therefore e_{\text {min }}=\frac{1.4}{f y}=0.003333<\mathrm{e}(0.0109) \quad \mathrm{OK}
\end{aligned}
$$

Check ACI requirements

check the ductility

The check of ductility should be w.r.t ε_{t} (strain at steel reinforcement ≥ 0.005) note: the equations of $\rho_{\max }$ and ρ_{b} for rectangular section.

Section Analysis

Section Analysis

$$
C=T
$$

$$
0.85 f_{c}^{\prime} A C=A_{s} f_{y}
$$

$$
A C=a b-150 \times 100
$$

$$
0.85 f_{c}^{\prime}(a b-15000)=A_{s} f_{y}
$$

$a=\frac{\left(\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime}}-15000\right)}{b}=\frac{\left(\frac{1470 \times 420}{0.85 \times 28}+15000\right)}{300}$
$=136.47 \mathrm{~mm}$
$c=\frac{a}{\beta_{1}}=\frac{136.471}{0.85}=160.55 \mathrm{~mm}$

Section Analysis

By finding c , we can check the ductility of section with respect to ε_{t} of steel reinforcement

$$
\begin{aligned}
& \varepsilon_{t}=0.003\left(\frac{d_{t}-c}{c}\right) \\
& =0.003\left(\frac{500-160.55}{160.55}\right) \\
& =0.00634>0.005 \text { OK }
\end{aligned}
$$

The section is Tension Controlled

$$
\text { and } \varnothing=0.9
$$

Section Analysis

$\therefore A C=136.47 \times 300-150 \times 100=25941 \mathrm{~mm}^{2}$
$\therefore C=0.85 f_{c}^{\prime} A C=0.85 \times 28 \times 25941=617400 N$
$\therefore T=A_{s} f_{y}=1470 \times 420=617400 N$
$M_{n}=(T$ or $C) \times z($ distance between T and $C)$
To find the distance between T and $C(z)$, we need to find y
$y=\frac{300 * 136.47 *\left(\frac{136.47}{2}\right)-150 * 100 *\left(\frac{100}{2}\right)}{300 * 136.47-150 * 100}$
$=78.78 \mathrm{~mm}$
$\therefore z=d-y=500-78.78=421.22 \mathrm{~mm}$
$\therefore M_{n}=T \times z=617400 \times 421.22$
$=260061228 \mathrm{~N} . \mathrm{mm} \approx 260 \mathrm{kN} . \mathrm{m}$
\therefore Design moment $\emptyset M_{n}=0.9 \times 260=234 \mathrm{kN} . \mathrm{m}$

Example (8) : Determine the design moment strength of section shown below, Given f_{c}^{\prime} $=28 M P a$ and $f_{y}=420 M P a$ and check the specification of the section according to ACI Code.

Solution:

$$
A_{S}=3 \pi \frac{20^{2}}{4}=942 \mathrm{~mm}^{2}
$$

Find width of beam w.r.t. y

$$
\begin{aligned}
& b_{y}=135+c 1 y+c 2 \\
& \text { at } y=0, b_{y}=135 \rightarrow c 2=0 \\
& \text { at } y=550, b_{y}=300 \rightarrow c 1=0.3 \\
& \therefore b_{y}=135+0.3 y
\end{aligned}
$$

Section Analysis

$C=T$
$0.85 f_{c}^{\prime} A C=A_{s} f_{y}$
$A C=A C 1-A C 2$
$A C 1=b_{a} a$
$A C 2=\left(b_{a}-135\right) / a / 2$
$\therefore A C=b_{a} a-\left(b_{a}-135\right) \frac{a}{2}=0.5 b_{a} a+67.5 a$
but $b_{a}=135+0.3 a$
$\therefore A C=0.5(135+0.3 a) a+67.5 a=135 a+0.15 a^{2}$
$\therefore \quad 0.85 f_{c}^{\prime} \times\left(135 a+0.3 a^{2}\right)=A_{s} f_{y}$
$3.57 a^{2}+3213 a-395640=0$
$a=109.75 \mathrm{~mm}$

Section Analysis

AC1

$c=\frac{a}{\beta_{1}}=\frac{109.75}{0.85}=129.12 \mathrm{~mm}$
a

Section Analysis

Check ACI requirements

$$
\begin{aligned}
& \rho=\frac{A_{s}}{\text { effective area }(\text { Ae })} \\
& A_{e}=\left(\mathrm{b}_{s}+135\right) \frac{d}{2} \\
& b_{s}=135+0.3 d=135+0.3(500) \\
& b_{s}=285 \mathrm{~mm} \\
& \therefore A_{e}=(285+135) \frac{500}{2}=105000 \mathrm{~mm}^{2} \\
& \therefore \rho=\frac{942}{105000}=0.00897 \\
& e_{\min }=\frac{1.4}{f y}=0.003333<\mathrm{e}(0.00897) \quad \mathrm{OK}
\end{aligned}
$$

Check ACI requirements

check the ductility of section with respect to ε_{t} of steel reinforcement
$\varepsilon_{t}=0.003\left(\frac{d_{t}-c}{c}\right)$
$=0.003\left(\frac{500-129.12}{129.12}\right)$
$=0.00863>0.005 \quad O K$
The section is Tension Controlled and $\varnothing=0.9$

\therefore Design moment $\emptyset M_{n}=0.9 \times 175$
$=157.5 \mathrm{kN} . \mathrm{m}$

Examples for Analysis of Single Reinforced Rectangular Beam Sections

(Analysis of SRRS)

The Minimum Reinforcement

ACI Code 9.6.1.2: As, min shall be the larger of (a) and (b)
a) $\quad A s_{\text {min }}=\frac{1.4}{f_{y}} b_{w} d$
b) $\quad A s_{\text {min }}=\frac{0.25 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d$

OR

$$
A s_{\min }=\frac{0.25 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d \quad \geq \frac{1.4}{f_{y}} b_{w} d
$$

OR

$$
A s_{\text {min }}=\left(\begin{array}{ll}
\frac{1.4}{f_{y}} b_{w} d & \text { for } f_{c}^{\prime} \leq 31.0 \mathrm{MPa} \\
\frac{0.25 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d & \text { for } f_{c}^{\prime}>31.0 \mathrm{MPa}
\end{array}\right.
$$

Ex1: Determine the design moment strength and the position of the neutral axis of the rectangular section shown below, if the reinforcement used is $4 \emptyset 25$, given $f^{\prime} c=28 \mathrm{MPa}, \mathrm{fy}=420 \mathrm{MPa}$.

Solution:

$$
A \emptyset 25=\frac{\pi}{4}(25)^{2}=490 \mathrm{~mm}^{2} \quad \square A s=4 \times 490=1960 \mathrm{~mm}^{2}
$$

Check As Minimum:

$$
A s_{\min }=\left(\begin{array}{ll}
(a) \frac{1.4}{f_{y}} b_{w} d & \text { for } f_{c}^{\prime} \leq 31.0 \mathrm{MPa} \\
(b) \frac{0.25 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d & \text { for } f_{c}^{\prime}>31.0 \mathrm{MPa}
\end{array}\right.
$$

$$
A s_{\min }=\frac{1.4}{f_{y}} b_{w} d=\frac{1.4}{420} \times 300 \times 540=540 \mathrm{~mm}^{2}<1960 \mathrm{~mm}^{2} \quad(O K)
$$

Equilibrium Equation:

$$
0.85 f_{c}^{\prime} a b=A_{s} f_{y} \longmapsto a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b} \quad \longmapsto a=\frac{1960 \times 420}{0.85 \times 28 \times 300}=115.294 \mathrm{~mm}
$$

$$
M_{n}=A_{s} f_{y}\left(d-\frac{a}{2}\right) \quad M_{n}=1960 \times 420\left(540-\frac{115.294}{2}\right)=397.0729 \mathrm{kN} . \mathrm{m}
$$

$$
c=\frac{a}{\beta_{1}}=\frac{115.294}{0.85}=135.64 \mathrm{~mm}
$$

Check for Ductility:

$$
\left.\varepsilon_{t}=0.003\left(\frac{d_{t}-c}{c}\right) \longleftrightarrow \varepsilon_{t}=0.003\left(\frac{540}{135.64}-1\right)=0.00894>0.005 \quad \text { (tension controlled } o k\right)
$$

So, the design moment strength is:

$$
\emptyset M_{n}=0.9 \times 397.0729=357.365 \mathrm{kN} . \mathrm{m}
$$

Ex2: For the section shown below with $f_{c}^{\prime}=\mathbf{2 8} \mathrm{MPa}$ and $\mathrm{fy}=\mathbf{4 2 0} \mathrm{MPa}$, calculate
a. The balanced steel reinforcement
b. The maximum reinforcement area allowed by the ACI Code for a tension-controlled section.
c. The position of the neutral axis and the depth of the equivalent compressive stress block for the tension-controlled section in b.

Solution:

a)

$$
\begin{aligned}
& \varepsilon_{s}=0.003\left(\frac{d_{t}-c}{c}\right) \square 0.0021=0.003\left(\frac{635-c}{c}\right) \\
& \frac{0.0021}{0.003} c=635-c \square 1.7 \mathrm{c}=635 \square \mathrm{c}=373.53 \mathrm{~mm} \\
& a=\beta_{1} c=0.85 \times 373.53=317.5 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{gathered}
0.85 f_{c}^{\prime} a b=A_{s} f_{y} \\
A_{s}=\frac{0.85 f_{c}^{\prime} a b}{f_{y}}=\frac{0.85 \times 28 \times 317.5 \times 400}{420}=7196.66 \mathrm{~mm}^{2}
\end{gathered}
$$

b)
$\varepsilon_{s}=0.003\left(\frac{d_{t}-c}{c}\right) \quad 0.005=0.003\left(\frac{635-c}{c}\right) \quad \frac{0.005}{0.003} c=635-c$
$2.666 c=635$
$\mathrm{c}=238.18 \mathrm{~mm}$

$$
a=\beta_{1} c=0.85 \times 238.18=202.45 \mathrm{~mm}
$$

$$
\begin{gathered}
0.85 f_{c}^{\prime} a b=A_{s} f_{y} \\
A_{s}=\frac{0.85 f_{c}^{\prime} a b}{f_{y}}=\frac{0.85 \times 28 \times 202.45 \times 400}{420}=4589.02 \mathrm{~mm}^{2}
\end{gathered}
$$

C)

$\mathrm{c}=238.18 \mathrm{~mm}$
$a=202.45 \mathrm{~mm}$

EX3: A 2.5 m span cantilever beam has a rectangular section and reinforcement as shown in the figure. The beam carries a dead load including its own weight of $22 \mathrm{kN} / \mathrm{m}$ and a live load of $13 \mathrm{kN} / \mathrm{m}$, using $\mathrm{f}^{\prime} \mathrm{c}=28 \mathrm{MPa}$, and $\mathrm{fy}=420 \mathrm{MPa}$, check if the beam is safe to carry the above loads.

$$
\begin{aligned}
& A \emptyset 22=\frac{\pi}{4}(22)^{2}=380 \mathrm{~mm}^{2} \\
& A s=3 \times 380=1140 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
A s_{\min }=\left(\begin{array}{ll}
\frac{1.4}{f_{y}} b_{w} d & \text { for } f_{c}^{\prime} \leq 31.0 \mathrm{MPa} \\
\frac{0.25 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d & \text { for } f_{c}^{\prime}>31.0 \mathrm{MPa}
\end{array}\right.
$$

$$
A s_{\min }=\frac{1.4}{f_{y}} b_{w} d=\frac{1.4}{420} \times 200 \times 400=266.66 \mathrm{~mm}^{2}<1140 \mathrm{~mm}^{2} \quad(O K)
$$

$$
w_{u}=1.2 D+1.6 L \longmapsto w_{u}=1.2 \times 22+1.6 \times 13=47.2 \mathrm{kN} / \mathrm{m}
$$

$$
M_{u, \max }=\frac{w_{u} \ell^{2}}{2}=\frac{47.2 \times 2.5^{2}}{2}=147.5 \mathrm{kN} . \mathrm{m}
$$

$$
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b} \quad \square a=\frac{1140 \times 420}{0.85 \times 28 \times 200}=100 \mathrm{~mm}
$$

$$
\begin{gathered}
M_{n}=A_{s} f_{y}\left(d-\frac{a}{2}\right) \\
M_{n}=1140 \times 420\left(400-\frac{100}{2}\right)=167.58 \mathrm{kN} . \mathrm{m}
\end{gathered}
$$

Check the Ductility:

$c=\frac{a}{\beta_{1}}=\frac{100}{0.85}=117.64 \mathrm{~mm}$

$$
\varepsilon_{s}=0.003\left(\frac{d_{t}-c}{c}\right)=0.003\left(\frac{400-117.64}{117.64}\right)=0.0072>0.005(O K)
$$

$$
\emptyset M_{n}=0.9 \times 167.58=150.822 k N . m>147.5 \quad(O K)
$$

Thank you...

Flexural Analysis of T-Sections

By: Dr. Majed Ashoor

Flange Effective Width Limitations:

$$
\begin{gathered}
(T-\text { Section }): b f \leq\left[\begin{array}{l}
b w+2(8 h f) \\
b w+2\left(\frac{L n}{8}\right) \\
b w+2\left(\frac{S n}{2}\right)
\end{array}\right. \\
(L-\text { Section }): b f \leq\left[\begin{array}{l}
b w+(6 h f) \\
b w+\left(\frac{L n}{12}\right) \\
b w+\left(\frac{S n}{2}\right)
\end{array}\right. \\
\text { Isolated T beam }\left[\begin{array}{l}
b f \leq 4 b_{w} \\
h f \geq 0.5 b_{w}
\end{array}\right.
\end{gathered}
$$

If flange located in Tension zone (Negative Moment), the section will be Rectangular with $b=b w$
If flange located in Compression zone, There will be two possibilities, depending on the concrete compression area required to satisfy the equilibrium:

$$
\begin{array}{ll}
a \leq h_{f} & (\text { Rectangular Section with } b=b f) \\
a>h_{f} & (\text { True } T \text { Beam })
\end{array}
$$

$0.85 f_{c}^{\prime} a b_{f}=A_{s} f_{y}$

$$
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b_{f}}
$$

Ex1: Calculate the design moment strength of the T-section shown below, using $\mathrm{f}^{\prime} \mathrm{C}=24 \mathrm{MPa}, \mathrm{fy}=420 \mathrm{MPa}$

Solution: $A_{b}=706 \mathrm{~mm}^{2}$

$$
\begin{aligned}
& A_{s}=6 \times 706=4236 \mathrm{~mm} \\
& 0.85 f_{c}^{\prime} a b_{f}=A_{s} f_{y} \\
& a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b_{f}}=\frac{4236 \times 420}{0.85 \times 24 \times 915}=95.31>80(\text { T.T.S })
\end{aligned}
$$

$$
\begin{gathered}
M_{n o v}=0.85 f_{c}^{\prime} h_{f}\left(b_{f}-b_{w}\right)\left(d-\frac{h_{f}}{2}\right) \\
M_{n o v}=0.85 \times 24 \times 80(915-250)\left(430-\frac{80}{2}\right) \\
M_{n o v}=423.26 \mathrm{kN} . \mathrm{m} \\
A_{\text {sov }}=\frac{0.85 f_{c}^{\prime} h_{f}\left(b_{f}-b_{w}\right)}{f_{y}} \\
A_{\text {sov }}=\frac{0.85 \times 24 \times 80(915-250)}{420}=2584 \mathrm{~mm}^{2}
\end{gathered}
$$

$$
\begin{gathered}
A_{s 1}=A_{s}-A_{\text {sov }} \\
A_{s 1}=4236-2584=1652 \mathrm{~mm}^{2} \\
A_{s 1} f_{y}=0.85 f_{c}^{\prime} a b_{w} \\
a=\frac{A_{s 1} f_{y}}{0.85 f_{c}^{\prime} b_{w}} \\
a=\frac{1652 \times 420}{0.85 \times 24 \times 250}=136.04 \mathrm{~mm} \\
M_{n 1}=0.85 f_{c}^{\prime} a b_{w}\left(d-\frac{a}{2}\right) \\
M_{n 1}=0.85 \times 24 \times 136.04 \times 250\left(430-\frac{136.04}{2}\right) \\
M_{n 1}=251.14 \mathrm{kN} . \mathrm{m} \\
M_{n}=M_{n 1}+M_{n o v} \\
M_{n}=251.14+423.26=674.4 \mathrm{kN} . \mathrm{m}
\end{gathered}
$$

$$
\begin{gathered}
c=\frac{a}{\beta_{1}}=\frac{136.04}{0.85}=160.04 \\
\varepsilon_{t}=0.003\left(\frac{d_{t}-c}{c}\right)
\end{gathered}
$$

$$
\varepsilon_{t}=0.003\left(\frac{460-160.04}{160.04}\right)=0.0056>0.005(\text { Tension Control })
$$

$$
M_{u}=\emptyset M_{n}
$$

$$
M_{u}=0.9 \times 674.4=606.96 \mathrm{kN} . \mathrm{m}
$$

Thank you...

Flexural Design of T-Sections

By: Dr. Majed Ashoor

$(T-$ Section $): b f \leq\left[\begin{array}{l}b w+2(8 h f) \\ b w+2\left(\frac{L n}{8}\right) \\ b w+2\left(\frac{S n}{2}\right)\end{array}\right.$
$(L-$ Section $): b f \leq\left[\begin{array}{l}b w+(6 h f) \\ b w+\left(\frac{L n}{12}\right) \\ b w+\left(\frac{S n}{2}\right)\end{array}\right.$

Isolated T beam $\left[\begin{array}{c}b f \leq 4 b_{w} \\ h f \geq 0.5 b_{w}\end{array}\right.$

Generally, the depth of the beam is not determined depending on the T-section at the Mid-span, instead, the depth is calculated depending on the rectangular section at the support or depending on the max. Shear.

There are two cases for design of T-Section:

1. The T-Section is subjected to Negative B.M, "near the supports".

For this case the flange is subjected to tension, and will be not effective in resisting $B . M$, so the section will be a rectangular section with $b=b w$.

2. The T-Section is subjected to Positive B.M, "near midspan". For this case there are two possibilities:
a. The dimensions of the sections are known, " $h, b w, b f, \& h f$ " and the unknown is only As.
b. The depth of the section " h " or " d " are unknowns as well as the As.

Design for case "a" the unknow is "As" only

1. Calculate the effective depth ' d ' by assuming one layer or two layers of tension reinforcement:

$$
\begin{array}{ll}
d=h-65 & \text { (one layer rein.) } \\
d=h-90 & \text { (two layers rein.) }
\end{array}
$$

2. Assume a=hf and calculate the Mnf

$$
\begin{gathered}
M_{n f}=0.85 f_{c}^{\prime} b_{f} h_{f}\left(d-\frac{h_{f}}{2}\right) \\
\text { if } M_{n f}\left[\begin{array}{lr}
\geq \frac{M_{u}}{\emptyset} & \text { Case I: rectangular section } \\
<\frac{M_{u}}{\emptyset} & \text { Case II:True T section }
\end{array}\right.
\end{gathered}
$$

For Case I: Design as a rectangular section with $\mathrm{b}=\mathrm{bf}$
For Case II (T.T.S): Calculate Mnov

$$
M_{n o v}=0.85 f_{c}^{\prime} h_{f}\left(b_{f}-b_{w}\right)\left(d-\frac{h_{f}}{2}\right)
$$

$$
\begin{gathered}
A_{\text {sov }}=\frac{0.85 f_{c}^{\prime} h_{f}\left(b_{f}-b_{w}\right)}{f_{y}} \\
M_{n 1}=\frac{M_{u}}{\emptyset}-M_{\text {nov }} \\
R_{n 1}=\frac{M_{n 1}}{b_{w} d^{2}} \\
\rho_{1}=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R_{n 1}}{f_{y}}}\right) \\
A_{s 1}=\rho_{1} b_{w} d \\
A_{s}=A_{s 1}+A_{\text {sov }} \\
\rho_{1} \leq \rho_{\max }=\frac{3}{8} \frac{\beta_{1}}{m}\left(\frac{d_{t}}{d}\right) \quad(\text { for tension control }) \\
M_{n}=M_{n 1}+M_{n o v} \\
M_{u}=\emptyset M_{n}
\end{gathered}
$$

3. For the case that (h,d\&As) all are unknowns:

$$
\text { Assume } \left.a=h_{f} \text { (a rectangular section with } b=b f\right)
$$

$$
\begin{gathered}
A_{s}=\frac{0.85 f_{c}^{\prime} b_{f} h_{f}}{f_{y}} \\
M_{n}=\frac{M_{u}}{\emptyset}=A_{s} f_{y}\left(d-\frac{h_{f}}{2}\right) \\
d=\frac{M_{n}}{A_{s} f_{y}}+\frac{h_{f}}{2}
\end{gathered}
$$

If value of d is acceptable then:

$$
\begin{array}{ll}
h=d+65 & \text { (one layer rein.) } \\
h=d+90 & \text { (two layers rein.) }
\end{array}
$$

If we choose d (new) greater than the d calculated above, the section need to be redesign as a (rectangular section) with $d=$ dnew

If we choose $d(n e w)$ smaller than the d calculated above, the section need to be redesign as a (True T section) with $d=$ dnew

Ex1: The floor system shown in figure, consist of 75 mm slab supported by 4 m clear span beams, spaced at 3.0 m on center. The beams have a web width $b w=300 \mathrm{~mm}$, and an effective depth $\mathrm{d}=470 \mathrm{~mm}$. Calculate the necessary reinforcement for a typical interior beam if the factored applied moment=720 kN.m. use $\mathrm{fc}^{\prime}=21 \mathrm{MPa}, f y=420 \mathrm{MPa}$.

Solution:
$(T-$ Section $): b f \leq\left[\begin{array}{l}b w+2(8 h f) \\ b w+2\left(\frac{S n}{2}\right) \\ b w+2\left(\frac{L n}{8}\right)\end{array}\right.$
$(T-$ Section $): b f \leq\left[\begin{array}{l}300+2(8 \times 75)=1500 \\ 300+2\left(\frac{2700}{2}\right)=3000 \\ 300+2\left(\frac{4000}{8}\right)=1300\end{array}\right.$

$$
M_{n}=\frac{M_{u}}{\emptyset}=\frac{720}{0.9}=800 \mathrm{kN} . \mathrm{m}
$$

assume a=hf

$$
M_{n f}=0.85 f_{c}^{\prime} b_{f} h_{f}\left(d-\frac{h_{f}}{2}\right)
$$

$$
\begin{gathered}
M_{n f}=0.85 \times 21 \times 1300 \times 75\left(470-\frac{75}{2}\right)=752.71<800(T . T . S) \\
M_{n o v}=0.85 f_{c}^{\prime} h_{f}\left(b_{f}-b_{w}\right)\left(d-\frac{h_{f}}{2}\right) \\
M_{n o v}=0.85 \times 21 \times 75 \times(1300-300)\left(470-\frac{75}{2}\right) \\
M_{n o v}=579 \mathrm{kN} . \mathrm{m}
\end{gathered}
$$

$$
\begin{gathered}
A_{\text {sov }}=\frac{0.85 \times 21 \times 75(1300-300)}{420}=3187.5 \mathrm{~mm}^{2} \\
M_{n 1}=\frac{M_{u}}{\emptyset}-M_{n o v} \\
M_{n 1}=800-579=221 \mathrm{kN} . \mathrm{m}
\end{gathered}
$$

$$
\begin{gathered}
R_{n 1}=\frac{M_{n 1}}{b_{w} d^{2}} \\
R_{n 1}=\frac{221 \times 10^{6}}{300 \times 470 \times 470}=3.335 \\
\rho_{1}=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R_{n 1}}{f_{y}}}\right) \\
m=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 \times 21}=23.53 \\
\rho_{\max }=\frac{3}{8} \frac{\beta_{1}}{m}\left(\frac{d_{t}}{d}\right)=\frac{3}{8} \times \frac{0.85}{23.53} \times(1)=0.0135>0.00886(o k . T . C) \\
\rho_{1}=\frac{1}{23.53}\left(1-\sqrt{1-\frac{2 \times 23.53 \times 3.335}{420}}\right) \\
\rho_{s 1}=\rho_{1} b_{w} d=0.00886 \times 300 \times 470=1249.26 \mathrm{~mm}^{2} \\
A_{s}=A_{s 1}+A_{\text {sov }} \\
A_{s}=1249.26+3187.5=4436.76 \mathrm{~mm}^{2}
\end{gathered}
$$

$$
\begin{gathered}
A_{\text {smin }}=\frac{1.4}{f_{y}} b_{w} d \\
A_{\text {smin }}=\frac{1.4}{420} \times 300 \times 470=470 \mathrm{~mm}^{2} \ll 4436.76(\mathrm{ok})
\end{gathered}
$$

Use $6 \varnothing 32$ in two layers:

$$
A s=6 \times 804=4824 \mathrm{~mm}^{2}>4436.76
$$

$$
\text { As } 1(\text { provided })=4824-3187.5=1636.5 \mathrm{~mm}^{2}
$$

$$
\rho_{1(\text { provided })}=\frac{1636.5}{300 \times 470}=0.0116<0.0135(\text { ok.T.C })
$$

$$
s=\frac{200-3 \times 32}{2}=52>32(o k)
$$

Thank you...

Shear Design for Beams

(One Way Shear)

Direct Shear \& Shear Force Diagram

Steel Bolted Connection

Load	P	
Shear	Constant	
Moment		Linear
		Parabolic

Shear Stress Formulae

The shear theory is not completely rigorous like flexure theory, because the shear strain is not clearly defined, and there are many variables effect the RC response to shear forces.

The shear stress distribution in any section of the beam is derived from the longitudinal shear force required to satisfy the equilibrium of forces as shown in the figure below:

(a)

(c)

(b)

$\sigma=\frac{M y}{E I}$

$$
\tau=\frac{V Q}{I b}
$$

(Flexure Formulae)
(Shear Formulae)

(d)

Diagonal Tension

(b)

(c)
(d)

(e)

—— Tension trajectories
--- Compression trajectories

Pure shear is rarely the dominated case in the reinforced concrete members, it is mostly combined with bending moment.
And even when the stress inside the member is pure shear, the failure would be caused by the diagonal tension stress rather than the shear stress.

Shear (Diagonal Tension) Cracks and Failure

ACI Provisions for Shear

$$
\mathrm{V}_{\mathrm{u}}=1.2 \mathrm{~V}_{\mathrm{D}}+1.6 \mathrm{~V}_{\mathrm{L}} \quad \text { and } \phi=0.75
$$

$$
n \times s=d
$$

n : number of stirrups intersect a crack of 45° (no. of stirrups of a distance d)
Av : area of all vertical legs of one stirrup (depends on the stirrup shape)
fyt: yield strength of stirrups steel should be $\leq 420 \mathrm{MPa}$

$$
\begin{aligned}
& V_{s}=A_{v} f_{y t} \frac{d}{s} \\
& s=\frac{A_{v} f_{y t} d}{V_{s}}
\end{aligned}
$$

Thank you...

